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The interception of two spherical particles with arbitrary size in an infinite linear
ambient Stokes flow is considered. The particle surfaces allow for slip according to
the Navier–Maxwell–Basset law relating the shear stress to the tangential velocity. At
any instant, the flow is computed in a frame of reference with origin at the centre of
one particle using a cylindrical polar coordinate system whose axis of revolution passes
through the centre of the second particle. Taking advantage of the axial symmetry of
the boundaries of the flow in the particle coordinates, the problem is formulated as a
system of integral equations for the zeroth, first, and second Fourier coefficients of the
boundary traction with respect to the meridional angle. The force and torque exerted
on each particle are determined by the zeroth and first Fourier coefficients, while the
stresslet is determined by the zeroth, first, and second Fourier coefficients. The derived
integral equations are solved with high accuracy using a boundary element method
featuring adaptive element distribution and automatic time step adjustment according
to the inter-particle gap. The results strongly suggest the existence of a critical value
for the slip coefficient below which the surfaces of two particle collide after a finite
interception time. The critical value depends on the relative initial particle positions.
The particle stress tensor and coefficients of the linear and quadratic terms in the
expansion of the effective viscosity of a dilute suspension in terms of the concentration
in simple shear flow are discussed and evaluated. Surface slip significantly reduces the
values of both coefficients and the longitudinal particle self-diffusivity.

1. Introduction
The interception of two spherical particles in a viscous flow has been discussed

extensively in the literature as a prototype of particle interaction in a non-dilute and
non-concentrated suspension. One objective has been to describe particle trajectories
with reference to collision efficiency and permanent doublet formation. Accurate
expressions describing these trajectories have been derived for a broad range of
conditions, from remote to nearly touching interceptions, as reviewed by Jones &
Schmitz (1988), Cichocki, Felderhof & Schmitz (1988), and Kim & Karrila (1991).
Other theoretical studies have sought to estimate the particle shear and self-diffusivity
and assess the effect of particle interaction on the rheological properties of a dilute
suspension to second-order with respect to the particle volume fraction (Batchelor
& Green 1972a, b). The results have shown that, both at first and second order, a
suspension of spherical particles behaves like a Newtonian fluid with an increased
effective viscosity.
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In simple shear flow, two particles may approach from infinity, intercept, and resume
their initial paths with some positive or negative delay. Particle doublets separated by
a small distance may permanently engage in a periodic motion described by a closed
orbit. Our inability to assess the percentage of particles exhibiting the second type of
motion in the absence of Brownian fluctuations and surface roughness has frustrated
the computation of the effective rheological properties at second order with respect to
the particle volume fraction (Batchelor & Green 1972b). Surface roughness allows for
soft collisions that modify the closed orbits, but the effect is not sufficiently strong to
remove the indeterminacy of the particle pair distribution. Only when all particle pairs
lie in a plane that is normal to the vorticity of the shear flow the problem becomes
well-posed. Wilson & Davis (2000, 2002) considered situations where particles initially
residing on closed orbits are moved onto open trajectories by roughness-mediated
contact. Because of this exclusion, closed orbits do not arise at steady state and can be
neglected in the study of the effective rheological properties. Such difficulties are not
encountered in the case of particles convected in two-dimensional or axisymmetric
purely elongational flow where closed orbits do not arise.

When the particle size is comparable to the mean free path of an ambient gas, the
discrete nature of the fluid causes an apparent slip velocity over the particle surface. A
liquid may also slide over a surface when the shear stress is high enough to overcome
the fluid–solid molecular attraction forces, as it does near a three-phase contact line
in relative motion with respect to the substrate. Slip velocity has been reported in
the flow of liquids over hydrophobic and possibly more general surfaces, although
the laboratory evidence is not conclusive (e.g. Vinogradova 1999). On the other hand,
macromolecular solutions and melts are known to exhibit intermittent slip that is
responsible for flow instability (Black & Graham 2001). In various physical systems,
the slip length may vary from nanometres to micrometres. In engineering applications,
slip occurs over the boundaries of porous materials (e.g. Beavers & Joseph 1967).

The slip boundary condition was first proposed by Navier (1823) and further
discussed by Maxwell (1879) in the context of gas flow (e.g. Schaaf & Chambre 1961;
Cercignani 2000). Basset (1888) derived an analytical solution for the flow due to a
solid sphere translating in infinite fluid at low Reynolds numbers, and generalized
the Stokes law for the drag force. Hocking (1973) considered the motion of a sphere
toward a plane wall or another sphere and showed that, when slip is allowed on both
surfaces, the resistive force becomes only logarithmically dependent on the gap, and
contact is achieved at a finite time. In related studies, Felderhof (1976a, b), Schmitz
& Felderhof (1978), and Felderhof & Jones (1986) used analytical techniques to
study arbitrary Stokes flow past a slippery sphere. Schmitz & Felderhof (1982a, b, c)
considered the grand resistance and mobility matrices for one or two porous spherical
particles with arbitrary permeability.

Luo & Pozrikidis (2007) recently considered the motion of a single spherical particle
in infinite unbounded linear flow and in semi-infinite simple shear flow bounded by
a plane wall. In the case of infinite flow, they derived an exact solution using the
singularity representation, and produced analytical expressions for the force, torque,
and stresslet in terms of the slip coefficient. These results generalize the Stokes–
Basset law for the force and the Einstein coefficient for the stresslet. The slip velocity
was shown to reduce the drag force, torque, and the effective viscosity of a dilute
suspension.

In this paper, we consider the interception of two spherical particles in an effectively
infinite linear flow and propose a computational framework for computing the
resistance coefficients and the translational and angular velocities of freely suspended
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particles. The key idea is to take advantage of the axial symmetry of the boundaries of
the flow with respect to the axis that passes through the particle centres at any instant,
and thereby formulate the problem as a system of integral equations for the zeroth,
first, and second Fourier coefficients of the boundary traction with respect to the
meridional angle. For particles immersed in a linear flow, the force and torque exerted
on each particle are determined by the zeroth and first Fourier coefficients, while
the stresslet is determined by the zeroth, first, and second Fourier coefficients. The
integral equations are solved with high accuracy using a boundary element method
featuring an adaptive element distribution and adaptive time-stepping according to
the inter-particle gap.

The problem is formulated in § 2, the boundary integral formulation is discussed
in § 3, the integral equations for the Fourier coefficients are derived in § 4, and the
computation of the stresslet in terms of the Fourier coefficients is discussed in § 5. In
§ 6, numerical results are presented for particles intercepting in simple shear flow, and
the effect of the particle slip on the effective viscosity of a dilute suspension and the
longitudinal self-diffusivity are evaluated. The main contributions, conclusions, and
prospects for further work are summarized in § 7.

2. Problem statement and mathematical formulation
We consider viscous flow past two suspended spherical particles in an effectively

infinite domain. Far from the particles, the velocity obtains the linear form

U∞(X) = LT · X, (2.1)

where L is the velocity gradient tensor, the superscript T denotes the matrix transpose,
and X = (X, Y, Z) is the position in laboratory-fixed coordinates. The radius of the
first particle is a, and the radius of the second particle is δa, where δ is the radii ratio.
Without loss of generality, we assume δ � 1. The presence or motion of the particles
generates a disturbance flow, denoted by the superscript D, that may be added to the
incident linear flow to yield the total flow with velocity U = U∞ + UD .

The no-penetration and slip boundary conditions are assumed over the particle
surfaces, requiring

U = V (i) + Ω (i) ×
(

X − X (i)
c

)
+ US, (2.2)

where V (i) is the velocity of translation of the ith particle centre, X (i)
c , and Ω (i) is the

angular velocity of rotation about X (i)
c , for i =1, 2. The slip velocity is given by the

Navier–Maxwell–Basset relation,

US =
L

µ β
N × F × N =

λ

µ
N × F × N, (2.3)

where µ is the fluid viscosity, F ≡ Σ · N is the traction, Σ is the stress tensor, N is
the unit normal vector pointing into the fluid, L is a chosen length scale, and β is
the dimensionless Basset (1888) slip coefficient ranging from zero corresponding to
vanishing shear stress and perfect slip, to infinity corresponding to no slip; λ=L/β

is the particle surface slip length.
In the case of a rarified gas, the slip coefficient, β , and slip length, λ, can be

rigorously related to the mean free path, λf , by the Maxwell relation λf /λ= βKn =
σ/(2 − σ ), where Kn ≡ λf /L is the Knudsen number, and σ is tangential momentum
accommodation coefficient (TMAC) expressing the fraction of molecules that undergo
diffusive instead of specular reflection (e.g. Schaaf & Chambre 1961; Cercignani 2000).
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The limit σ =1 yields the no-slip boundary condition, β → ∞, whereas the limit σ = 0
yields the perfect-slip boundary condition, β → 0.

2.1. Particle doublet coordinates

To standardize the problem, we introduce a new coordinate system, (x, y, z), with
origin at the centre of the first sphere, X (1)

c . The x axis passes through the centres
of the two particles, and the y and z axes point in two orthogonal but otherwise
unspecified directions. Thus, the definition of the particle coordinate system affords
one degree of freedom. The position vector and velocity transform according to the
equations

X = X (1)
c + A · x, u = AT · U, (2.4)

where A is an orthogonal transformation matrix whose columns host the direction
cosines of the unit vectors along the x, y, and z axes,

A =

⎡
⎣(ex)X (ey)X (ez)X

(ex)Y (ey)Y (ez)Y
(ex)Z (ey)Z (ez)Z

⎤
⎦ ≡

⎡
⎣AXx AXy AXz

AYx AYy AYz

AZx AZy AZz

⎤
⎦, (2.5)

where

ex =
X (2)

c − X (1)
c∣∣X (2)

c − X (1)
c

∣∣ , (2.6)

and ei · ej = δij . Applying the velocity transformation rules for the incident linear flow,
we find

u∞(x) = AT · LT · X = AT · LT ·
(

X (1)
c + A · x

)
(2.7)

or

u∞(x) = v∞ + MT · x, (2.8)

where

v∞ = AT · LT · X (1)
c , M = AT · L · A. (2.9)

The orthogonality of the matrix A ensures that the trace of M is zero.

2.2. Simple shear flow

In the particular case of simple shear flow along the Y axis with the velocity varying
linearly in the X direction (figure 1), the velocity in the laboratory frame is given by

U∞
X = 0, U∞

Y = kX, U∞
Z = 0, (2.10)

and the associated velocity gradient tensor is

L = k

⎡
⎣0 1 0

0 0 0

0 0 0

⎤
⎦ , (2.11)

where k is the shear rate. Making substitutions, we find the velocity in the particle
frame,

v∞
x = AYxX

(1)
c , v∞

y = AYyX
(1)
c , v∞

z = AYzX
(1)
c , (2.12)
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Figure 1. Two spherical particles with arbitrary radii intercepting in simple shear flow;
(X, Y,Z) are the global coordinates and (x, y, z) are the particle doublet coordinates.

where

MT = k

⎡
⎣AYxAXx AYxAXy AYxAXz

AYyAXx AYyAXy AYyAXz

AYzAXx AYzAXy AYzAXz

⎤
⎦= k r2 ⊗ r1, (2.13)

and r1, r2 are the first and second rows of A.
When the axis connecting the particle centres is parallel to the XY plane, we set

AZx =0 for the first unit vector, AXy = −AYx , AYy = AXx , AZy =0, for the second unit
vector, and AXz = 0, AYz = 0, AZz = 1, for the third unit vector, and find that the last
row and column of M are zero, yielding

MT = k

⎡
⎣M11 M12 − 1 0

M12 −M11 0

0 0 0

⎤
⎦ , (2.14)

where M11 =AXxAYx , M12 =A2
Xx . Thus,

u∞
x = v∞

x + kM11x + k(M12 − 1)y,

u∞
y = v∞

y + kM12x − kM11y, u∞
z = 0.

}
(2.15)

2.3. Governing equations

The Reynolds number written with respect to the particle size is assumed to be
sufficiently small that the motion of the fluid is governed by the equations of Stokes
flow,

−∇p + µ∇2u = 0, ∇ · u = 0, (2.16)

where p is the pressure. The boundary conditions on the particle surfaces require

u = uRBM + uS, (2.17)
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where

uRBM = v(i) + ω(i) ×
(

x − x(i)
c

)
(2.18)

expresses rigid-body motion, v(i) is the velocity of translation of the ith particle centre,
x(i)

c , and ω(i) is the angular velocity of rotation about x(i)
c ; by definition, x(1)

c = 0. The
slip velocity is given by the Navier–Maxwell–Basset relation

uS =
L

µβ
n × f × n =

λ

µ
n × f × n, (2.19)

where f ≡ σ · n is the traction, σ is the stress tensor, and n is the unit normal vector
pointing into the fluid.

The particle motion in the fixed frame is governed by the ordinary differential
equations

dX (i)
c

dt
= A · v(i),

dD(i)

dt
=

(
A · ω(i)

)
× D(i), (2.20)

for i = 1, 2, where the particle director D(i) is a material vector painted on each
particle. Unless the rotation of a spherical particle is of interest, consideration of the
second equation is not required.

3. Boundary integral formulation
The governing equations are solved in the particle doublet coordinates using the

boundary integral formulation for Stokes flow. To begin, we decompose the flow in
the particle frame into the undisturbed component denoted by the superscript ∞
and a disturbance component due to the particles denoted by the superscript D, and
express the disturbance velocity at the point x0 that lies inside the fluid in terms of
integrals over the particle surfaces, P ,

uD(x0) = − 1

8πµ
S(x0, f D, P ) +

1

8π
D(x0, uD, P ). (3.1)

We have introduced the single- and double-layer potentials of Stokes flow defined
over a generic surface, D,

Sj (x0, f , D) ≡
∫∫

D

fi(x)Gij (x, x0) dS(x),

Dj (x0, u, D) ≡
∫∫

D

ui(x)Tijk(x, x0)nk(x) dS(x),

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

where

Gij (x, x0) =
δij

r
+

x̂i x̂j

r3
, Tijk(x, x0) = −6

x̂i x̂j x̂k

r5
, (3.3)

are the free-space Green’s function and associated stress tensors, x̂ = x − x0, r = |x̂|,
and δij is Kronecker’s delta (e.g. Pozrikidis 1992). Next, we use the reciprocal theorem
to write

− 1

8πµ
S(x0, f ∞, P ) +

1

8π
D(x0, u∞, P ) = 0, (3.4)

and introduce the integral identity

D(x0, uRBM, P ) = 0. (3.5)
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Combining (3.1), (3.4) and (3.5), and enforcing the boundary conditions on the
particles surfaces, we obtain

u(x0) = u∞(x0) − 1

8πµ
S(x0, f , P ) +

1

8π
D(x0, uS, P ). (3.6)

In the absence of slip velocity, the last term on the right-hand side does not appear.
To derive integral equations, we apply (3.6) at the surface of each particle and

enforce the slip boundary condition to find

S(x0, f , P ) − µDPV (x0, uS, P ) = −8πµ(uRBM − u∞(x0)) − 4πµuS(x0), (3.7)

where PV denotes the principal-value integral. Complemented with (2.19), this
equation provides us with a system of three scalar equations for the three components
of the traction over the particle surfaces, also involving the particle translational and
angular velocities.

3.1. Fourier expansion

A key observation is that the boundaries of the flow, but not the flow itself, are
axially symmetric with respect to the x-axis. This geometrical property allows us to
simplify the problem by expressing the cylindrical polar components of the left- and
right-hand sides of (3.7), denoted as (x, σ, ϕ), in Fourier series with respect to the
meridional angle, ϕ, where σ is the distance from the x axis, and ϕ is defined such
that y = σ cos ϕ and z = σ sinϕ. We begin by writing⎡

⎣uRBM
x

uRBM
σ

uRBM
ϕ

⎤
⎦=

⎡
⎣ vx

0

ωxσ

⎤
⎦ +

⎡
⎣ −ωzσ

vy + ωzx̃

vz − ωyx̃

⎤
⎦ cos ϕ +

⎡
⎣ ωyσ

vz − ωyx̃

−(vy + ωzx̃)

⎤
⎦ sinϕ, (3.8)

for the ith particle, where x̃ = x − xc, and⎡
⎢⎣

u∞
x

u∞
σ

u∞
ϕ

⎤
⎥⎦ =

⎡
⎢⎣

v∞
x + M11x

1
2
(M22 + M33)σ

1
2
(M23 − M32)σ

⎤
⎥⎦ +

⎡
⎢⎣

M21σ

v∞
y + M12x

v∞
z + M13x

⎤
⎥⎦ cos ϕ +

⎡
⎢⎣

M31σ

v∞
z + M13x

−v∞
y − M12x

⎤
⎥⎦ sinϕ

+
1

2

⎡
⎣ 0

(M22 − M33)σ

(M23 + M32)σ

⎤
⎦ cos 2ϕ +

1

2

⎡
⎣ 0

(M23 + M32)σ

(−M22 + M33)σ

⎤
⎦ sin 2ϕ. (3.9)

Motivated by these forms, we express the cylindrical polar components of the
velocity field in the truncated Fourier series

uα(x, σ, ϕ) = Uα0(x, σ ) +

2∑
m=1

[
Uc

αm(x, σ ) cos(mϕ) + Us
αm(x, σ ) sin(mϕ)

]
, (3.10)

where Greek indices take the values x, σ, ϕ, and Uα0, Uc
αm and Us

αm are Fourier
coefficients. Similarly, we express the cylindrical polar components of the boundary
traction in the truncated Fourier series

fα(x, ϕ) = Fα0(x, σ ) +

2∑
m=1

[
Fc

αm(x) cos(mϕ) + Fs
αm(x) sin(mϕ)

]
, (3.11)

and Fc
αm, Fs

αm are unknown cosine and sine Fourier coefficients. The Fourier expan-
sion of the tangential component of the traction required for the evaluation of the
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slip velocity is

(n × f × n)α = Tα0 +

2∑
m=1

[
Tc

αm cos(mϕ) + Ts
αm sin(mϕ)

]
, (3.12)

where

Tx0 =
σ

R2
(σFx0 − x̃Fσ0), Tσ0 = − x̃

R2
(σFx0 − x̃Fσ0), Tϕ0 = Fϕ0, (3.13)

and

Tc
xm =

σ

R2

(
σFc

xm − x̃Fc
σm

)
, Tc

σm = − x̃

R2

(
σFc

xm − x̃Fc
σm

)
, Tc

ϕm = Fc
ϕm,

Ts
xm =

σ

R2

(
σFs

xm − x̃Fs
σm

)
, Ts

σm = − x̃

R2

(
σFs

xm − x̃Fs
σm

)
, Ts

ϕm = Fs
ϕm,

⎫⎪⎬
⎪⎭
(3.14)

for m =1, 2, where R is the particle radius.

3.2. Computation of the force and torque

The Cartesian components of the force exerted on each particle, P , are given by

Fx =

∫∫
P

fx dS = 2π

∫
C

Fx0σ dl,

Fy =

∫∫
P

(fσ cos ϕ − fϕ sinϕ) dS = π

∫
C

(
Fc

σ1 − Fs
ϕ1

)
σ dl,

Fz =

∫∫
P

(fσ sinϕ + fϕ cosϕ) dS = π

∫
C

(
Fs

σ1 + Fc
ϕ1

)
σ dl,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.15)

where C is the contour of P in a meridional plane, and l is the arclength along C.
The Cartesian components of the torque are given by

Tx =

∫∫
P

(σ cos ϕfz − σ sinϕfy) dS = 2π

∫
C

Fϕ0σ
2 dl,

Ty =

∫∫
P

(σ sinϕfx − x̃fz) dS = π

∫
C

(
σFs

x1 − x̃Fs
σ1 − x̃Fc

ϕ1

)
σ dl,

Tz =

∫∫
P

(x̃fy − σ cosϕfx) dS = π

∫
C

(
−σFc

x1 + x̃Fc
σ1 − x̃Fs

ϕ1

)
σ dl.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.16)

It is remarkable that the force and torque depend only on the zeroth and first
Fourier coefficients and are independent of the second Fourier coefficients. Referring
to (3.8) and (3.9), we see that the zeroth and first coefficients are determined by the
particle translational and angular velocities and on the following seven independent
components of the traceless matrix M,

M11, M12, M13, M21, M22, M23 − M32, M31. (3.17)

Using the tensor transformation rules, we find that the force and torque in the
laboratory frame (X, Y, Z), denoted by the subscript L, are given by

FL = A · E, TL = A · T. (3.18)
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3.3. Expansion of the single-layer potential

The Cartesian components of the single-layer potential take the form

Sj (x0, f , P ) =

∫∫
P

[
fj

(x̂2 + ŷ2 + ẑ2)1/2
+

fxx̂ + fyŷ + fzẑ

(x̂2 + ŷ2 + ẑ2)3/2
(x − x0)j

]
dS(x)

=

∫∫
P

[
fj(

x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂

)1/2

+
fxx̂ + fσ (σ − σ0 cos ϕ̂) + fϕσ0 sin ϕ̂(

x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂

)3/2
(x − x0)j

]
dS(x), (3.19)

where x̂ = x − x0. The associated cylindrical polar components are

⎡
⎣Sx

Sσ

Sϕ

⎤
⎦ (x0, f , P ) =

∫∫
P

1(
x̂2 + σ 2 + σ 2

0 − 2σσ0 cos ϕ̂
)1/2

⎡
⎣ fx

fσ cos ϕ̂ − fϕ sin ϕ̂

fσ sin ϕ̂ + fϕ cos ϕ̂

⎤
⎦

+
fxx̂ + fσ (σ − σ0 cos ϕ̂) + fϕσ0 sin ϕ̂(

x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂

)3/2
×

⎡
⎣ x̂

σ cos ϕ̂ − σ0

σ sin ϕ̂

⎤
⎦ dS(x). (3.20)

Substituting (3.11) and simplifying, we find

Sα(x0) =

2∑
m=0

∫
C

⎡
⎣Pxxm cos(mϕ0) Pxσm cos(mϕ0) Pxϕm sin(mϕ0)

Pσxm cos(mϕ0) Pσσm cos(mϕ0) Pσϕm sin(mϕ0)

Pϕxm sin(mϕ0) Pϕσm sin(mϕ0) Pϕϕm cos(mϕ0)

⎤
⎦ ·

⎡
⎣Fc

xm

Fc
σm

Fc
ϕm

⎤
⎦

+

⎡
⎢⎣

Pxxm sin(mϕ0) Pxσm sin(mϕ0) −Pxϕm cos(mϕ0)

Pσxm sin(mϕ0) Pσσm sin(mϕ0) −Pσϕm cos(mϕ0)

−Pϕxm cos(mϕ0) −Pϕσm cos(mϕ0) Pϕϕm sin(mϕ0)

⎤
⎥⎦ ·

⎡
⎣Fs

xm

Fs
σm

Fs
ϕm

⎤
⎦ dl(x). (3.21)

The dimensionless single-layer kernels are given by

Pαβ0 = σ

⎡
⎣ I10 + x̂2 I30 x̂ (σ I30 − σ0 I31) 0

x̂ (σI31 − σ0I30) I11 + (σ 2 + σ 2
0 ) I31 − σσ0 (I32 + I30) 0

0 0 2I11

⎤
⎦ ,

(3.22)

Pαβ1 = σ

⎡
⎢⎣

I11 + x̂2I31 x̂(σ I31 − σ0I32)

x̂(σ I32 − σ0I31) I12 +
(
σ 2 + σ 2

0

)
I32 − σσ0 (I33 + I31)

x̂σ (I32 − I30) I12 − I10 + σ 2(I32 − I30) − σσ0 (I33 − I31)

x̂σ0(I32 − I30)

I10 − I12 + σ 2
0 (I30 − I32) − σσ0 (I31 − I33)

I12 + σσ0 (I31 − I33)

⎤
⎦,

(3.23)
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and

Pαβ2 = σ

⎡
⎣ (2I12 − I10) + x̂2(2I32 − I30)

x̂σ (2I33 − I31) − x̂σ0 (2I32 − I30)

2x̂σ (I33 − I31)

x̂σ (2I32 − I30) − x̂σ0(2I33 − I31)

2I13 − I11 +
(
σ 2 + σ 2

0

)
(2I33 − I31) − σσ0 (2I34 + I32 − I30)

2(I13 − I11) + 2σ 2(I33 − I31) − 2σσ0 (I34 − I32)

2x̂σ0(I33 − I31)

2(I11 − I13) + 2σ 2
0 (I31 − I33) − 2σσ0 (I32 − I34)

(2I13 − I11) + σσ0 (−2I34 + 3I32 − I30)

⎤
⎦, (3.24)

where

Imn ≡
∫ 2π

0

cosn ω dω[
x̂2 + σ 2 + σ 2

0 − 2σσ0 cos ω
]m/2

=
4wm

(4σσ0)m/2

∫ π/2

0

(2 cos2 ω − 1)n

(1 − w2 cos2 ω)m/2
dω,

(3.25)

and w2 = 4σσ0/[x̂
2 +(σ +σ0)

2]. These integrals can be expressed in terms of complete
elliptic integrals of the first or second kind, which are then evaluated either by iterative
methods or by standard library functions.

When the point x0 lies at the surface of a sphere, as x → x0, σ → σ0 and θ → θ0,
the diagonal components of the single-layer kernels exhibit logarithmic singularities,
where θ is the meridional angle. Detailed consideration reveals

Pxx0 ∼ −2 log |θ̂ |, Pσσ0 ∼ −2 log |θ̂ |, Pϕϕ0 ∼ −4 log |θ̂ |,
Pxx1 ∼ −2 log |θ̂ |, Pσσ1 ∼ −2 log |θ̂ |, Pϕϕ1 ∼ −4 log |θ̂ |,
Pxx2 ∼ −2 log |θ̂ |, Pσσ2 ∼ −2 log |θ̂ |, Pϕϕ2 ∼ −3.5 log |θ̂ |,

⎫⎪⎬
⎪⎭ (3.26)

where θ̂ = θ − θ0.

3.4. Expansion of the double-layer potential

On the surface of a sphere, the double-layer potential takes the form

Dj (x0, u, P ) = −6

∫∫
P

ux x̂ + uy ŷ + uz ẑ

(x̂2 + ŷ2 + ẑ2)5/2
(x − x0)j (x − x0) · n(x) dS(x)

= −6

a

∫∫
P

ux x̂ + uσ (σ − σ0 cos ϕ̂) + uϕ σ0 sin ϕ̂(
x̂2 + σ 2 + σ 2

0 − 2σσ0 cos ϕ̂
)5/2

(x − x0)j G dS(x),

(3.27)

where x̂ = x − x0, and G = (x − xc) x̂ + σ (σ − σ0 cos ϕ̂). The associated cylindrical
polar components are:⎡

⎣Dx

Dσ

Dϕ

⎤
⎦ (x0, u, P ) = −6

a

∫∫
P

uxx̂ + uσ (σ − σ0 cos ϕ̂) + uϕσ0 sin ϕ̂

(x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂)5/2

× G

⎡
⎣ x̂

σ cos ϕ̂ − σ0

σ sin ϕ̂

⎤
⎦ dS(x). (3.28)
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Substituting (3.10) and simplifying, we find

Dα(x0) =

2∑
m=0

∫
C

⎡
⎣Rxxm cos(mϕ0) Rxσm cos(mϕ0) Rxϕm sin(mϕ0)

Rσxm cos(mϕ0) Rσσm cos(mϕ0) Rσϕm sin(mϕ0)

Rϕxm sin(mϕ0) Rϕσm sin(mϕ0) Rϕϕm cos(mϕ0)

⎤
⎦ ·

⎡
⎣Uc

xm

Uc
σm

Uc
ϕm

⎤
⎦

+

⎡
⎣ Rxxm sin(mϕ0) Rxσm sin(mϕ0) −Rxϕm cos(mϕ0)

Rσxm sin(mϕ0) Rσσm sin(mϕ0) −Rσϕm cos(mϕ0)

−Rϕxm cos(mϕ0) −Rϕσm cos(mϕ0) Rϕϕm sin(mϕ0)

⎤
⎦ ·

⎡
⎣Us

xm

Us
σm

Us
ϕm

⎤
⎦ dl(x).

(3.29)

The double-layer kernels are given by

Rαβ0 = −6σ

a

⎡
⎣ τ x̂2I50 − σσ0x̂

2I51

τ x̂(σI51 − σ0I50) − σσ0x̂(σI52 − σ0I51)

0

τ x̂(σI50 − σ0I51) − σσ0x̂(σI51 − σ0I52)(
τσ 2 + τσ 2

0 + σ 2σ 2
0

)
I51 − σσ0

(
τ + σ 2 + σ 2

0

)
I52 + σ 2σ 2

0 I53 − τσσ0I50

0

0

0

τσσ0(I50 − I52) − σ 2σ 2
0 (I51 − I53)

⎤
⎦ , (3.30)

Rαx1 = −6σ

a

⎡
⎣ τ x̂2I51 − σσ0x̂

2I52

τ x̂(σ I52 − σ0I51) − σσ0x̂(σ I53 − σ0I52)

τ x̂σ (I52 − I50) − σ 2σ0x̂(I53 − I51)

τ x̂(σI51 − σ0I52) − σσ0x̂(σI52 − σ0I53)

τ
(
σ 2 + σ 2

0

)
I52 − τσσ0(I53 + I51) − σσ0

(
σ 2 + σ 2

0

)
I53 + σ 2σ 2

0 (I54 + I52)

τσ 2(I52 − I50) − τσσ0(I53 − I51) − σ 3σ0(I53 − I51) + σ 2σ 2
0 (I54 − I52)

τ x̂σ0(I52 − I50) − σσ 2
0 x̂(I53 − I51)

τσ 2
0 (I50 − I52) − τσσ0(I51 − I53) − σσ 3

0 (I51 − I53) + σ 2σ 2
0 (I52 − I54)

τσσ0(I51 − I53) − σ 2σ 2
0 (I52 − I54)

⎤
⎦ ,

(3.31)

and

Rαx2 = −6σ

a

⎡
⎢⎢⎣

τ x̂2(2I52 − I50) − σσ0x̂
2(2I53 − I51)

τ x̂σ (2I53 − I51) − τ x̂σ0 (2I52 − I50) − x̂σ 2σ0(2I54 − I52)

+x̂σσ 2
0 (2I53 − I51)

2τ x̂σ (I53 − I51) − 2x̂σ 2σ0(I54 − I52)

τ x̂σ (2I52 − I50) − τ x̂σ0(2I53 − I51) − σ 2σ0x̂(2I53 − I51) + σσ 2
0 x̂(2I54 − I52)

τ
(
σ 2 + σ 2

0

)
(2I53 − I51) − τσσ0(2I54 + I52 − I50)

−σσ0

(
σ 2 + σ 2

0

)
(2I54 − I52) + σ 2σ 2

0 (2I55 + I53 − I51)

2τσ 2(I53 − I51) − 2τσσ0(I54 − I52) − 2σ 3σ0(I54 − I52) + 2σ 2σ 2
0 (I55 − I53)

2τ x̂σ0(I53 − I51) − 2σσ 2
0 x̂(I54 − I52)

2τσ 2
0 (I51 − I53) − 2τσσ0(I52 − I54) − 2σσ 3

0 (I52 − I54) + 2σ 2σ 2
0 (I53 − I55)

τσσ0(−2I54 + 3I52 − I50) − σ 2σ 2
0 (−2I55 + 3I53 − I51)

⎤
⎦ ,

(3.32)

where τ = x̂x̃ + σ 2 and x̃ = x − xc.
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When the point x0 lies at the surface of a sphere, the components of the double-layer
kernels exhibiting singular behaviour are

Rϕϕ0 ∼ 6

R
log |θ̂ |, Rϕϕ1 ∼ 5.5

R
log |θ̂ |, Rϕϕ2 ∼ 5

R
log |θ̂ |, (3.33)

where R is the sphere radius. All other entries exhibit a regular behaviour. These
logarithmic singularities are consistent with the following ordering of principal-
value integrals for the double-layer potential in Stokes flow: the integrand of
two-dimensional flow is discontinuous along the boundary contour at the singular
point; the integrand of axisymmetric flow corresponding to a Fourier expansion
is logarithmically singular along the trace of the boundary in a meridional plane;
and the integrand of three-dimensional flow exhibits an integrable, simple pole (1/r)
singularity over a locally curved surface.

4. Integral equations
Substituting the Fourier expansions into the integral equation (3.7) and collecting

the Fourier coefficients, we derive three decoupled systems of integral equations that
can be solved separately in isolation. For m = 0, we find∫

C

Pαβ0Fβ0 dl − µ

∫
C

Rαβ0US
β0 dl + 4πµUS

α0 = −8πµ
(
URBM

α0 − U∞
α0

)
. (4.1)

Inspecting the kernels, we find that this system can be further decomposed into a
first subsystem of two integral equations for the axial and radial components of
the traction, and a second subsystem of one integral equation for the meridional
component of the traction. In the case of the mobility problem, the first subsystem is
used to compute the x-component of the particle translational velocity for a specified
x-component of the force, and the second subsystem is used to compute the x-
component of the particle angular velocity for a specified x-component of the torque.
For m =1, 2, we find∫

C

[
Pcc

αβmFc
βm − Pcs

αβmFs
βm

]
dl − µ

∫
C

[
Rcc

αβmUcS

βm − Rcs
αβmUsS

βm

]
dl + 4πµUcS

αm

= −8πµ
(
UcRBM

αm − Uc∞

αm

)
, (4.2)

and ∫
C

[
Psc

αβmFc
βm + Pss

αβmFs
βm

]
dl − µ

∫
C

[
Rsc

αβmUcS

βm + Rss
αβmUsS

βm

]
dl + 4πµUsS

αm

= −8πµ
(
UsRBM

αm − Us∞

αm

)
, (4.3)

where the shown complementary kernels are defined as

Pcc
αβm = Pss

αβm =

⎡
⎣Pxxm Pxσm 0

Pσxm Pσσm 0

0 0 Pϕϕm

⎤
⎦ , (4.4a)

Pcs
αβm = Psc

αβm =

⎡
⎣ 0 0 Pxϕm

0 0 Pσϕm

Pϕxm Pϕσm 0

⎤
⎦ . (4.4b)
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The double-layer kernels arise by replacing P with R in these expressions. In the
case of the mobility problem, the system for m = 1 is used to compute the y and z

components of the translational and angular velocities from corresponding specified
components of the force and torque. We emphasize again that solving the system for
m = 2 is not required for the computation of the force and torque in the resistance
problem or for the computation of the particle velocities in the mobility problem.

An integral identity states that S(x0, n, P ) = 0, where P is the surface of each
sphere, reflecting the indeterminacy of the pressure. Accordingly,∫

C

Pαβ0nβ dl = 0, (4.5)

and the integral equation for the zeroth-order Fourier terms does not have a unique
solution, where C the contour of each sphere in a meridional plane. To remove the
eigenfunction, we deflate the spectrum of the single-layer potential by adding to the
left-hand side of (4.1) the term

nα(x0)

∫
C

nβ(x)Fβ0(x) dl(x). (4.6)

This modification ensures a perfectly well-posed problem.

5. Stresslet and particle stress tensor
In the case of force-free and torque-free particles, the flow far from the particles is

induced by a stresslet with strength

sij =
1

2

∫∫
P

[xi fj + xj fi − 2µ(uinj + ujni)] dS, (5.1)

where the integration is performed over the surfaces of both particles (e.g. Pozrikidis
1992, p. 48). Note that the integral remains unchanged when the origin is shifted
to a new location. When the boundary conditions over the particle surfaces express
rigid-body motion, the integral involving the velocity is zero, and the stresslet depends
only on the particle traction. In our case, because of the slip velocity, the velocity term
makes a finite contribution. Substituting the Maxwell–Basset boundary condition and
simplifying, we find

sij =
1

2

∫∫
P

[xi fj + xj fi − 2L

β
( f

|
i nj + f

|
jni)] dS, (5.2)

where f
|
i is the tangential component of the traction, f | = n × f × n = f · (I − nn).

For a spherical particle of radius R,

sij = Jij ( f ) − 2L

βR
Jij ( f |), (5.3)

where

Jij ( f ) =
1

2

∫∫
P

[x̃i fj + x̃j fi] dS, (5.4)
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and x̃ = x − xc. Substituting the Fourier expansions and performing the integration
in the meridional direction, we derive expressions in terms of contour integrals,

Jxx( f ) = 2π

∫
C

Fx0σ x̃dl, Jxy( f ) =
π

2

∫
C

[
x̃
(
Fc

σ1 − Fs
ϕ1

)
+ σFc

x1

)]
σdl,

Jxz( f ) =
π

2

∫
C

[
x̃
(
Fs

σ1 + Fc
ϕ1

)
+ σFs

x1

)]
σdl,

Jyy( f ) = π

∫
C

(
Fσ0 +

1

2
Fc

σ2 − 1

2
Fs

ϕ2

)
σ 2 dl, Jyz( f ) =

π

2

∫
C

(
Fc

ϕ2 + Fs
σ2

)
σ 2dl,

Jzz( f ) = π

∫
C

(
Fσ0 − 1

2
Fc

σ2 +
1

2
Fs

ϕ2

)
σ 2dl.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.5)

Replacing F with T we obtain corresponding expressions for Jij ( f |). These expres-
sions reveal that the off-diagonal components of the stresslet depend on the zeroth
and first Fourier coefficients, while the diagonal components depend on the zeroth,
first and second Fourier coefficients.

Using the rules of tensor transformation, we find that the stresslet in the laboratory
frame is given by

S = A · s · AT . (5.6)

The dimensionless particle stress tensor is defined as

Σ =
3

4πa3(1 + δ3)µk
S, (5.7)

where k is an appropriate constant shear or extensional rate.

6. Numerical methods
To solve the integral equations derived in § 4, we divide the particle contours

in the ϕ =0 meridional plane into circular elements, and approximate the Fourier
coefficients with constant functions over each element. For best accuracy, the elements
are concentrated near the axis of symmetry so that their length increases geometrically
with distance from the axis of symmetry. Given the number of elements, the element
stretch ratio is determined by r-adaptation, so that the size of the element in the middle
of the inter-particle gap is comparable to the gap size (figure 2.) The integrals over
the boundary elements are computed using the six-point Gauss–Legendre quadrature.
The logarithmic singularities of the singular elements are subtracted off and computed
analytically over the circular segments.

Now applying point collocation at the midpoint of each element, we generate
a system of linear equations for the unknown solution vectors consisting of the
particle-element traction. In the case of freely suspended particles, the unknown
translational and angular velocities are appended to the vector of unknowns for the
zeroth and first Fourier coefficients. Specifically, the x-velocity is appended to the
first zeroth-order subsystem, and the x angular velocity is appended to the second
zeroth-order subsystem. The rest of the unknowns are appended to the first-order
system. Twelve more equations are then apportioned to ensure the vanishing of the
Cartesian components of the force and torque over each particle.

Equations (2.20) governing the particle motion are integrated in time using the
second-order Runge–Kutta method. When the particle gap is small, large lubrication
forces develop rendering the differential equations stiff and raising the possibility of
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Figure 2. Adaptive distribution of collocation points on two intercepting spheres according
to the particle gap. The dotted lines trace the particle centre trajectories.

unnatural collision and artificial overlap at a finite time. Overlap is tolerated in other
Stokesian dynamics simulations, but is deemed unacceptable in our approach. To
ensure a regular behaviour, the time step is adjusted according to the particle gap,
ε, and the relative particle velocity in the laboratory frame, as 
t =ωε/|V A − V B |,
where ω is a numerical coefficient. This time step is accepted only if it is lower than
a specified value, 
t0, used for well-separated particles. Numerical experimentation
showed that this adaptive protocol yields the best results compared to other similar
protocols explored. The numerical method was implemented in a MATLAB code
with embedded animation. A complete simulation requires a few dozen to several
hundred time steps and consumes a few hours to a few days of CPU time on 2.0 GHz
desktop Linux computer.

To assess the performance of the numerical method, we consider the interception
of two equal spheres whose centres are initially located at XA/a = (0.6, −3, 0), and
XB/a = (−0.6, 3, 0). Figure 2 shows the early part of the particle trajectories in the
absence of slip velocity and demonstrates that the spheres come into near-physical
contact, although they never collide. Figure 3(a) compares the trajectory of the centre
of sphere A, computed using analytical expressions for the particle velocity given in
the Appendix (dotted lines), with that computed using the boundary element method
using sixty-four elements, k
t0 = 0.20, and ω = 1.0 (dashed line). The agreement
is exceptional, as the upper dotted line and solid line are indistinguishable. Close
inspection reveals that the differences in the particle centre position are on the order of
10−5a throughout and upon completion of the interception. Figure 3(b) describes the
evolution of the time step for the simulation presented in figure 3(a), and demonstrates
a drastic reduction by one order of magnitude in the near-contact regime.

Figure 3(c) shows the evolution of the minimum gap between the intercepting
spheres computed with 128 elements, k
t0 = 0.20, and ω = 1.0. We observe a drastic
reduction by nearly two orders of magnitude as the particles undergo a near-collision.
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Figure 3. (a) Particle centre trajectories in the XY plane (dashed line) are compared with
those computed using analytical expressions for the particle velocity (dotted lines), for
initial particle positions XA/a = (0.6, −3, 0) and XB/a = (−0.6, 3, 0), and no-slip surfaces.
(b) Adaptive evolution of the time step according to the inter-particle gap. (c) Evolution of the
gap between the two intercepting particles plotted on a semi-logarithmic scale. (d) Evolution of
the gap between the two intercepting particles; the dotted, dot-dashed, dashed, and solid lines
correspond to simulations conducted, respectively, with 16, 32, 64, and 128 boundary elements,
k
t0 = 0.20, and ω = 1.0; the curves traced by the symbols duplicate the results with ω = 0.5.

The minimum separation occurring in the vertical orientation along the X-axis is
on the order of 10−2a. The accuracy and convergence of the numerical method
are tested in figure 3(d), where the minimum gap is plotted against the particle
centre longitudinal position. The lowest dotted, dot-dashed, dashed, and solid lines
correspond to simulations conducted, respectively, with 16, 32, 64, and 128 boundary
elements, using k
t0 = 0.20, and ω = 1.0. The curves with the circular symbols
duplicate the simulations with a smaller time step, ω = 0.5. The results converge
smoothly and fast as the number of boundary elements is doubled.

Further computations with one particle subject to the slip boundary condition
confirmed that the numerical results are in excellent agreement with an analytical
solution based on the singularity method (Luo & Pozrikidis 2007). The numerical
error in the simulation of two particles is comparable to that discussed in this section
for no-slip surfaces.
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Figure 4. Effect of the surface slip on the evolution of the minimum gap between two spheres
intercepting in the (X, Y ) plane, starting from the longitudinal position YA/a=-3. (a) Initial
height XA/a = 0.6 and βp = ∞ (upper solid line), 500 (dashed line), 100 (dot-dashed line), 75
(dotted line), 65 (solid line), 50 (dot-dashed line); and 5 (dashed line for 64 elements, dotted
line for 128 elements). (b) Initial height XA/a = 0.8 and βp = ∞ (upper solid line), 75 (dashed
line), 10 (dot-dashed line), 5 (dotted line), 3.75 (solid line), 3 (dashed line), 1.0 (dot-dashed
line), and 0.1 (lower dotted line). (c) XA/a = 1.0 and βp = ∞ (solid line) 0.1 (dashed line),
and 0 (dot-dashed line). (d) XA/a = 1.2 and βp = ∞ (solid line), 0.1 (dashed line), and 0.0
(dot-dashed line).

7. Particle interception in simple shear flow
Our main objective is to investigate the effect of the surface slip on the particle

trajectories and rheology of dilute suspensions. Several series of simulations were
conducted for force-free and torque-free particles of equal size convected in a simple
shear flow described by equations (2.10). Unless otherwise specified, the contour of
each particle is discretized into sixty-four elements, the particle centre trajectories lie
in the (X, Y ) plane, ZA = ZB = 0, and the origin is set such that YB = −YA throughout
the motion.

7.1. Particle trajectories

Figure 4 describes the evolution of the gap between two particles approaching from
infinity and starting from several initial positions along the X-axis. In these graphs, the
logarithm of the gap is plotted against the longitudinal position of the first particle,
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Figure 5. (a) Effect of surface slip on the minimum gap between two spheres intercepting
in the (X, Y )-plane for initial longitudinal position YA/a = –3 and XA/a =0.6 (circles) or 0.8
(squares). (b) Initial particle centre positions in the (X, Y )-plane inside the shaded area lead to
closed particle trajectories for no-slip surfaces; the evolution of the minimum gap for particles
initially located on the Y -axis is shown in (c). (d) Effect of the surface slip on the evolution
of the minimum gap between two spheres intercepting off the (X, Y )-plane starting from the

initial position XA/a = 0.6/
√

2, YA/a = –3, and ZA/a = 0.6/
√

2, for βp = ∞ (solid line), 100
(dashed line), 65 (dot-dashed line), 5 (dotted line).

YA. For each initial position, results are presented for several values of the slip
coefficient β including the limiting value of infinity corresponding to no-slip surfaces.
In all cases, when the slip coefficient is sufficiently large, the particles roll over one
another and separate after reaching a minimum gap in the vertical orientation along
the X-axis, occurring at YA = 0.

The numerical results strongly suggest the existence of a critical value of the slip
coefficient for sufficiently small initial separations along the X-axis, below which
the particles come into physical contact at some point during the interception. The
critical value of the slip coefficient depends on the relative initial particle positions.
The evidence is best illustrated in figure 5(a), showing a graph of the minimum gap
during the interception plotted against the slip coefficient on a log-log scale. Since
a contact force is not implemented in the mathematical model, nothing prevents
two colliding particles from penetrating one another, causing the numerical method
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to fail. In practice, the calculations with sixty-four boundary elements around each
particle cease to be reliable when the minimum gap between the particles becomes
on the order of 10−5a. Figure 4(a) shows the results of a duplicate calculation with
128 elements for β = 5, conducted to confirm the accuracy of the cruder computation
and further demonstrate the rapid decline of the gap.

In reality, once the particles come in contact, attraction and adhesion forces will
cause the formation of a transient or permanent dipole. Depending on the strength of
the adhesion forces, the doublet may separate when its axis has been aligned with the
principal axis of stretching of the simple shear flow, which is inclined by an angle of
π/4 with respect to the y-axis. In principle, we can identify the collision time, continue
the simulation with two attached particles, and allow the particles to be detached
when the relative particle velocity points away from the line connecting their centres.
However, it would be necessary also to state whether the touching particles can roll
over one another while attached, and this raises the possible modes of motion.

Batchelor & Green (1972a) pointed out that not all trajectories originate from
infinity, as illustrated in figure 5(b) for no-slip surfaces. Initial particle centre positions
symmetrically located with respect to the origin inside the shaded area lead to closed
trajectories with the particles exhibiting a perpetual orbiting motion. When the
particles are initially located on the Y -axis, they migrate off the axis and nearly
touch when they reach the vertical orientation along the X-axis. The evolution of
the minimum gap for particles initially located on the Y -axis is shown in figure 5(c).
These particle trajectories were computed using the analytical expressions for the
velocity given in the Appendix. An inflection point is observed when the gap is on
the order of 10−3a in all cases, and the graphs subsequently become upward concave.
Unfortunately, we are unable to simulate these periodic orbits as the inter-particle gap
becomes prohibitively small at some point during the motion, and the simulations
with sixty-four elements are not reliable in their entire length. However, based on our
results for open trajectories, we expect that allowing for slip will lead to collision even
at relatively high values of the slip coefficient.

Similar behaviour is observed for particles intercepting off the (X, Y )-plane, as
shown in figure 5(d). As the slip coefficient decreases, the minimum gap becomes
smaller and tends to zero at a certain point during the interception.

7.2. Particle stress tensor

Batchelor (1970) showed that the effective stress tensor of a suspension of force-free
spherical particles freely convected in an infinite linear flow is given by

σEff = µ

(
2 E∞ +

1

V
s

)
, (7.1)

where E∞ is the rate-of-deformation tensor of the linear flow, and s is the stresslet
computed over the surfaces of all particles in a given volume, V . In the limit of
infinite dilution, s 	 ns(1), where s(1) is the stresslet computed over the surface of one
particle, and n is the particle number density defined as the number of particles in
the given volume V , divided by V . Thus,

σEff 	 µ

(
2E∞ +

n

V
s(1)

)
≡ µ

(
2E∞ + ckΣ (1)

)
, (7.2)

where c = nVp is the particle volume fraction,

Σ (1) ≡ 1

kVp

s(1) (7.3)
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is the one-particle stress tensor, Vp is the volume of one particle, and k is a properly
defined shear or elongational rate. A detailed calculation shows that

Σ (1) =
2α1

k
E∞, (7.4)

and thus

σEff 	 µ(1 + α1c)2 E∞, (7.5)

where α1 is a constant. A dilute suspension of spherical particle thus behaves like a
Newtonian fluid with increased viscosity.

For rigid particles with no-slip surfaces, Einstein (1906) calculated α1 = 5/2. For
spherical drops enclosing a fluid with viscosity λµ, Taylor (1932) calculated

α1 =
1

2

5λ + 2

λ + 1
. (7.6)

The Einstein value arises in the limit λ → ∞. Luo & Pozrikidis (2007) derived an
exact singularity solution for infinite linear flow past a spherical particle with a slip
surface and found

α1 =
5

2

β + 2

β + 5
. (7.7)

As the slip coefficient β decreases from infinity to zero, the particle stress tensor of
an infinite dilute suspension decreases from the Einstein value of 5/2 to the value of
unity. Comparing (7.7) to (7.6), we see that the slip coefficient, β , is the counterpart
of the viscosity ratio, λ.

The rate-of-deformation tensor of the one-particle suspension can be expressed in
the form

E(x − xc) = E∞ + kE(1)(x − xc), (7.8)

where xc is the particle centre, and the dimensionless rate-of-strain disturbance field
E(1) is available in analytical form from the analysis of Luo & Pozrikidis (2007).
Batchelor & Green (1972b) noted that the mean value of E(1)(x − xc) over a spherical
surface centred at xc is zero; we have confirmed that this is also true when the slip
boundary condition applies.

Based on these single-particle results, we expect that, when two equal-sized particles
A and B intercept in simple shear flow with the origin set midway such that XB = −XA,
the instantaneous particle stress tensor due to the first particle will be given by

Σ(XA) 	 α1

(
2

k
E∞ + 2E(1)(2XA)

)
. (7.9)

The second term on the right-hand side expresses the effect of the rate-of-deformation
field induced by the disturbance flow generated by particle B at the location of particle
A. In the chosen frame, the two particles are separated by the distance 2 XA. Thus,
the shearing component of the particle stress tensor is approximately given by

Σxy(XA) 	 α1

(
1 + 2E(1)

xy (2XA)
)
. (7.10)

Since the velocity due to a force-free particle decays like 1/r2 and its derivatives
decay like 1/r3, when r is distance from the particle centre, the second term on the
right-hand sides of the last two equations decays like 1/|XA|3.
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Figure 6. Evolution of the scaled particle stress tensor during particle interception in the
(X, Y )-plane for initial position YA = −10a, and (a, b) XA = 0.5a (c, d) XA = a (e, f ) XA = 2a.
The left column is for β = ∞, and the right column is for β = 0.1. The dotted lines represent

the theoretical prediction cxy 	 2E
(1)
xy (2X A).

Figure 6 illustrates the evolution of the shifted and normalized shearing component
of the particle stress tensor

cxy(XA) ≡ Σxy(XA)

α1

− 1, (7.11)
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for three initial particle positions in the (X, Y )-plane. The dotted lines represent the
asymptotic prediction cxy(XA) 	 2E(1)

xy (2XA) deduced from the single-particle analysis.
As two spheres with no-slip surfaces approach one another, the particle stress rises to
a local maximum, declines, and finally reaches a local minimum when the particles are
in the vertical orientation along the X-axis. As the initial position XA0 increases from
a, to 2a, cxy decreases nearly by one order of magnitude, confirming the cubic decay.
The asymptotic prediction is surprisingly accurate when XA0 = 2a, but significantly
underestimates the particle stress tensor for smaller particle separations. As long as the
particles do not collide, allowing for slip does not change the qualitative behaviour,
though it significantly reduces the magnitude of the particle stress tensor. When the
particles collide, the coefficient cxy tends to a finite value at the collision time, and
then follows a different solution branch determined by the unspecified nature of the
subsequent motion.

7.3. Suspension viscosity

Batchelor & Green (1972b) demonstrated that the particle stress tensor and effective
viscosity of a dilute monodisperse suspension can be expanded in an asymptotic series
with respect to the particle volume fraction, c,

µeff = µ(1 + α1c + α2c
2 + · · ·). (7.12)

If all particle trajectories originate from infinity, and if the suspension is random
and the interceptions are uncorrelated, we are able to compute the coefficient α2 as
a weighted average of the stresslet integrated over time along pairwise interception
paths. The basic reasoning is that particle interception makes a contribution to the
particle stress tensor that is proportional to the particle volume fraction, c, as well as
to the frequency of interception, f .

In the case of simple shear flow, we set the origin such that XB = −XA along each
interception path, and note that the frequency of interception is given by

f (XA0, ZA0) = kn2|XA0|, (7.13)

where the subscript 0 denotes the position before interception, and n = 3c/(4πa3)
is the particle number density. Next, we compute the cumulative deviation of the
stresslet from the single-particle value due to the interception along each path,

Σ̄xy(XA0, ZA0) ≡
∫ ∞

0

(Σxy(t) − α1) dt. (7.14)

Finally, we obtain the contribution of the interception to the shearing component of
the particle stress tensor by integrating over all trajectory paths,

Σ (2)
xy =

∫ ∞

−∞

∫ ∞

−∞
f (XA0, ZA0)Σ̄xy(XA0, ZA0) dXA0 dZA0. (7.15)

Setting

σEff
xy = µk

(
1 + cΣ (1)

xy + cΣ (2)
xy

)
, (7.16)

we obtain

α2 =
1

c

∫ ∞

−∞

∫ ∞

−∞
f (XA0, ZA0)Σ̄xy(XA0, ZA0) dXA0 dZA0

=
3k

2πa3

∫ ∞

−∞

∫ ∞

−∞
|XA0|Σ̄xy dXA0 dZA0. (7.17)
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Batchelor & Green (1972b) computed the coefficient α2 based on the expression

α2 =
1

c

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(Σxy(r) − α1)P (r) drx dry drz, (7.18)

where P (r) is the probability that the centre of sphere A is located at the position
XB + r . As r tends to infinity, P reduces to the particle number density, n. Particle
conservation requires that P satisfies the Liouville equation

∇r · (V AP (r)) = 0. (7.19)

Integrating this equation over a slender semi-infinite tubular volume bounded on the
sides by particle centre trajectories, applying the divergence theorem, and noting that
the integrals over the tubular sides vanish identically, we find

n2k|XA0| dXA0 dYA0 = P (r)V A · t dS, (7.20)

where dS is the area of the tube cross-section on the downstream end located at r ,
and t is the unit tangential vector along the tube centreline. Thus,

α2 =
2kn

c

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|XA0|(Σxy(r) − α1)

1

V A · t
drx dry drz

dS
dXA0 dYA0. (7.21)

The fraction of the four differentials on the right-hand side is the differential arclength
along t , denoted by dl. Now we identify the ratio dl/V A · t with the time interval dt ,
and recover precisely (7.17).

We return to (7.17) and recall that, when the trajectories are well-separated, Σxy(t)−
α1 	 2α1E

(1)
xy , and

Σ̄xy ∼ a3

∫ ∞

−∞

dt(
X2

A + Y 2
A + Z2

A

)3/2
. (7.22)

Because the particles are nearly convected with the velocity of the simple shear flow,
dYA/dt 	 kXA,

Σ̄xy ∼ a3

k|XA0|

∫ ∞

−∞

dYA(
X2

A0 + Y 2
A + Z2

A0

)3/2
∼ a3

k|XA0|
(
X2

A0 + Z2
A0

) . (7.23)

Substituting in (7.17) we obtain a non-convergent integral in the XA0 − YA0 plane.
Batchelor & Green (1972b) encountered a similar difficulty working in the framework
of configurational probability, which they overcame by renormalization.

We follow essentially the same approach by recalling that the mean value of
E(1)(x − xc) over the surface of a sphere centred at xc is zero and writing the identity∫ ∞

−∞

∫ ∞

−∞
Ē

(1)
(2XA0, 2ZA0) dXA0 dZA0 = 0, (7.24)

where

Ē
(1)

(2XA0, 2ZA0) ≡
∫ ∞

−∞
E(1)(2XA0, 2YA, 2ZA0) dYA. (7.25)

We may now state without any approximation

α2 =
3

2πa2

∫ ∞

−∞

∫ ∞

−∞
Φ(XA0, ZA0) dXA0 dZA0, (7.26)
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Figure 7. Effect of the slip coefficient on (a) the dimensionless function Φ , and (b) net
longitudinal shift for particle trajectories in the (X, Y )-plane. The circles correspond to β = ∞
(no-slip), and the squares correspond to β =0.1.

where

Φ(XA0, ZA0) ≡ α1

a

[
k|XA0|

α1

Σ̄xy(XA0, ZA0) − 2 Ē(1)
xy (2XA0, 2ZA0)

]
(7.27)

is a dimensionless integrand. When the trajectories are well-separated, dYA/dt 	
k|XA0|, and

Φ(XA0, ZA0) 	 α1

a

∫ ∞

−∞

[
1

α1

Σxy(XA0, YA, ZA0) − 1 − 2E(1)
xy (2XA0, 2YA, 2ZA0)

]
dYA. (7.28)

Because of (7.10), the function Φ(XA0, ZA0) decays faster than 1/(X2
A0 + Z2

A0), leading
to a convergent integral.

The function Φ may be computed by integrating the particle stress tensor along
particle trajectories and the function E(1)

xy (2XA0, 2YA, 2ZA0) along paths parallel to the
Y axis. In our calculations, the particle motion in the (X, Y ) plane was integrated
from YA = −10a to 10a. At the end of a simulation, the X position of a particle centre
differs only by an amount on the order of 10−5a from the initial position due to
the numerical error. Figure 7(a) shows a graph of Φ plotted against XA0 for β = ∞
(no-slip) and 0.1. The data clearly suggests that allowing for slip considerably reduces
the magnitude of Φ and thus the value of the second-order viscosity coefficient α2. It
is striking that, as the slip coefficient decreases from infinity to zero, the magnitude
of Φ drops by one order of magnitude.

The contribution to the stresslet from the closed trajectory paths lying inside the
shaded area in figure 5(b) must also be considered. Batchelor & Green (1972b) explain
that the problem is indeterminate, as the percentage of particle pairs permanently
engaged in cyclic motion cannot be assessed without further assumptions. However,
there are circumstances where closed trajectories are eliminated after a certain
evolution time due to particle surface roughness, as discussed in Wilson & Davis
(2000). These physical conditions are favourable in that particle roughness also
introduces an effective slip velocity included in our formulation. Thus, the conclusions
reached on the basis of the open-trajectory analysis are most likely to prevail in a
real flow environment.



Interception of two spheres in linear flow 153

7.4. Longitudinal particle self-diffusivity

After a non-colliding interception, a particle resumes its initial position in the (X, Y )
plane, exhibiting no net migration. However, the particle does experience an overall
drift in the longitudinal position Y compared to that corresponding to the unperturbed
straight path, defined as


Y ≡ YA(t → ∞) − YA(t = 0) − kXA0t. (7.29)

When the particle number density distribution is uniform in a region that is large
compared to the particle size, a particle will experience a large number of interceptions
while remaining in an essentially unchanged environment. By symmetry, the mean
value of 
Y is zero, as a particle intercepting with another particle from above or
below is, respectively, delayed or pushed forward. If the interceptions are uncorrelated,
we may use the theory of random walks to describe the statistics of the streamwise
particle position in terms of a long-time longitudinal self-diffusivity defined as

DYY =

∫ ∞

−∞

∫ ∞

−∞
f (XA0, YA0)
Y 2 dXA0 dYA0, (7.30)

with the understanding that XB = −XA. Consideration of the far-field behaviour
shows that this integral is convergent.

Figure 7(b) shows a graph of 
Y plotted against XA0 for β = ∞ (no-slip) and 0.1.
The dotted lines were constructed using the analytical solution for no-slip surfaces
discussed in the Appendix. Our numerical results for no-slip surfaces represented
by the circles are in excellent agreement with these predictions. For small particle
separations 
Y is positive, whereas for large particle separations 
Y is negative. The
data suggests that allowing for surface slip reduces the magnitude of 
Y and thus
the value of the longitudinal self-diffusivity.

8. Discussion
We have developed a numerical method for computing with high accuracy linear

flow past a pair of spherical particles with no-slip or slip surfaces. The key step
is the Fourier expansion of the flow variables with respect to the meridional angle
measured around the axis connecting the particle centres at every instant. We have
found that only the zeroth and first Fourier coefficients are necessary for computing
the force, torque, translational and angular velocities. The second Fourier coefficients
are necessary for evaluating the stresslet and thus investigating the structure of the
far flow and the rheology of a dilute suspension.

Simulations were performed for particles of equal size intercepting in simple shear
flow. It was found that, when the slip coefficient is sufficiently small, the inter-particle
gap may become zero and the particles may come in physical contact at a finite time.
Collision occurs when the particles intercept in a plane that is normal to the vorticity
of the simple shear flow (XY -plane), as well as for more general configurations. The
critical value of the slip coefficient depends on the relative initial particle positions.
When the particles intercept in the XY -plane, the threshold initial height along the
X axis above which collision does not occur under any circumstances is bracketed by
0.8 a and a, where a is the particle radius.

To pursue the motion after collision, it is necessary to specify the nature of the
particle contact. Some particles may firmly adhere and move as rigid doublets until
separated by a pulling hydrodynamic force. Other particles may roll over one another
while in contact. Davis et al. (2003) studied the translational and rotational motion of
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a suspended sphere with microscopic roughness falling past a lighter sphere or moving
down an inclined surface, and observed roll-slip behaviour. With straightforward
modifications, the boundary-integral method implemented in our work should be
able to describe these motions.

Our analysis is complementary to that of Wilson & Davis (2000, 2002) and Davis
et al. (2003) on the motion of particles with rough surfaces, in that our formulation
accounts for the slip velocity, possibly associated with surface roughness, whereas
their formulation accounts for the effect of surface irregularities during collision. If we
assume that the slip length is comparable to the length scale of the surface roughness,
L, we find β = L/L. In laboratory experiments, natural or fabricated surface
roughness corresponds to values of β in the range 100–1000. Our results indicate that
this level of roughness will have a significant effect on intercepting particle trajectories.

We have monitored the behaviour of the particle stress tensor during the intercep-
tion, and found that an asymptotic prediction based on the one-particle solution is
surprisingly accurate for particle positions along the X-axis as small as two particle
radii, but significantly underestimates the particle stress tensor for smaller particle
separations. The results showed that, as long as the particles do not collide, allowing
for slip does not change the qualitative behaviour, and only reduces the magnitude
of the particle stress tensor. When the particles collide, the stresslet tends to a finite
value at the collision time, and then follows a different solution branch determined
by the unspecified nature of the subsequent motion.

We have considered the effective viscosity of a dilute suspension and discussed
two equivalent methods of calculating the coefficient of the quadratic term in the
asymptotic expansion with respect to the particle volume fraction. Our computations
suggest that allowing for slip considerably reduces the value of this coefficient. In
particular, as the slip coefficient decreases from infinity to zero, the magnitude of this
coefficient drops by one order of magnitude. These results have significant implications
on the effective rheology of suspensions of rough and irregular particles.

Random interceptions modify the longitudinal particle positions after an event, and
the net effect can be described in terms of a longitudinal self-diffusivity. Our results
showed that particle slip reduces the magnitude of the longitudinal self-diffusivity by
allowing the particles to roll over one another more easily during the interception.
Because interceptions do not modify the transverse particle positions after an event,
computation of the transverse self-diffusivity requires consideration of particle triplet
interceptions, which is beyond the capability of our methods.

The numerical method for the two-particle problem proposed in this work can
be incorporated in a more general framework, wherein pairwise interactions in a
non-dilute suspension are subtracted off and treated in particle doublet coordinates,
whereas multi-particle interactions are treated by domain discretization methods or
multi-pole expansions. In essence, this amounts to accounting for strong lubrication
forces based on the pairwise interaction model. The strength of this approach is that
results with a specified level accuracy can be obtained, albeit at a yet undetermined
computational cost.

This research was supported by a grant provided by the National Science
Foundation.

Appendix. Interception of two no-slip spheres
Expressions for the trajectories of two identical particles of radius a intercepting in

simple shear flow with shear rate k are summarized by Kim & Karrila (1991). The
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differential equations governing the evolution of the distance between the particle
centres are

ẋ = k
(
y + ex − 1

2
By

)
, ẏ = k

(
ey − 1

2
Bx

)
, ż = kez, (A 1)

where x = (X (2)
c − X (1)

c )/a, e = xy (B − A)/r2, and r = |x|. The mobility functions A

and B are given by

A = 5 r−3 − 8 r−5 + 25 r−6 − 35 r−8 + 125 r−9 − 102 r−10 + 12.5 r−11 + 430 r−12,

B = 1
3
(16r−5 + 10r−8 − 36r−10 − 25r−11 − 36r−12),

}

(A 2)

in the far field r � 2.5,

A= −4.3833 + 17.7176r−1 + 14.8204r−2 − 92.4471r−3 − 46.3151r−4 + 232.2304r−5,

B = −3.1918 + 12.3641r−1 + 11.4615r−2 − 65.2926r−3 − 36.4909r−4 + 154.8074r−5,

}

(A 3)

in the intermediate regime, 2.01 <r < 2.5, and

A =
16.3096

r
− 7.1548, B = 2

0.4056 C2 + 1.49681 C − 1.9108

r(C2 + 6.04250 C + 6.32549)
, (A 4)

in the lubrication regime, 2 <r � 2.01, where C = − ln(r − 2).
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